Abstract

Unstable pseudorevertants of mitochondrial mutants of Saccharomyces cerevisiae lacking the maturase function encoded by the fourth intron of the cytochrome b gene (bI4) were isolated. They were found to be heteroplasmic cells owing their regained ability to respire (and grow on glycerol medium) to the presence of a rearranged (rho-) mtDNA that contains an in-frame fusion of the reading frames of the group I introns bI4 and intron 4 alpha of the coxl gene encoding subunit I of cytochrome c oxidase (aI4 alpha). The products of those gene fusions suppress the bI4 maturase deficiency still present in those heteroplasmic cells. Similar heteroplasmic pseudorevertants of a group II maturaseless mutant of the first intron of the coxI gene were characterized; they result from partial deletion of the coxI gene that fuses the reading frames of introns 1 and 2. These heteroplasms provide independent support for the existence of RNA maturases encoded by group I and group II introns. Also, since the petite/mit- heteroplasms arise spontaneously at very high frequencies they provide a system that can be used to obtain mutants unable to form or maintain heteroplasmic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call