Abstract

In this research, we demonstrate inverted perovskite light-emitting devices (PeLEDs) based on zinc oxide nanorod arrays (ZnO NAs) as the electron transport layer and methylammonium lead bromide nanoplatelets (MAPbBr3 NPLs) as the emissive material for the first time. The polyethyleneimine ethoxylated (PEIE) was inserted between the ZnO NAs and the MAPbBr3 NPLs layer to reduce the energy barrier and improve the electron injection efficiency. Besides, different weight ratios of poly(N-vinylcarbazole) (PVK) were blended with MAPbBr3 NPLs to make evenly dispersed nanocomposite films, thereby enhancing the performance of devices. Meanwhile, the photoluminescence of MAPbBr3 NPLs:PVK nanocomposite film was increased due to reduced self-quenching and prolonged carrier lifetime. Inverted PeLEDs with the configuration of ITO/PEIE-modified ZnO NAs/MAPbBr3 NPLs:PVK/TFB/Au were fabricated and evaluated, using TFB as the hole transport layer. The current density of the devices containing PVK matrix was significantly suppressed compared to those without PVK. Herein, the best device revealed a max brightness of 495 cd m−2 and a low turn-on voltage of 3.1 V that shows potential use in light-emitting applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.