Abstract

The process of fusing different images from various imaging modalities into a single, fused image that contains a wealth of information and improves the usability of medical images in real-world applications is known as medical image fusion. The most useful features from data can be automatically extracted by deep learning models. In the recent past, the field of image fusion has been preparing to introduce a deep learning model. In this work we can achieve the multi-Focus medical image fusion by hybrid deep learning models. Here the relevant health care data are collected from database (CT & MRI brain images). Following the input images are pre-processed using sliding window and the abnormal data is eliminated using distribution map method. Further the proposed work comprises 3 steps, 1) the proposed method is used to extract the features from the input image using the modified Tetrolet transform (MMT), which uses a brain image as an input image. This model is capable of identifying anomalous trends in time series data and automatically deriving from the input data characteristics that characterise the system state.2) Propose a novel hybrid model based on CNN with Bi-LSTM (Bi-directional Short Term Memory) multi-focus image fusion method to overcome the difficulty faced by the existing fusion methods. 3) This hybrid model are used to predict the brain tumor present in the fused image. Finally, experimental results are evaluated using a variety of performance measures. From the results, we can see that our suggested model contributes to an increase in predictive performance while also lowering the complexity in terms of storage and processing time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.