Abstract
Hydraulic fracturing, a popular mining technique, generates heavy metal contamination in nearby freshwater aquifers. This poses a threat to both the surrounding ecosystems an human health if exposed. Existing methods of heavy metal removal can produce additional hazardous byproducts. This proposal presents the use of a hybrid biofilm filter containing graphene and curli fibres with metal binding sites. Curli fibres are amyloid fibrils found on the extracellular biofilm of Escherichia coli (E coli.). Through the use of plasmid vectors, E. coliwill be engineered to produce secreted curli fibres with metal-binding residues. The stability and cohesive properties of the curli fibres augments the adherence to the graphene scaffolding, thus allowing for generation of a hybrid biofilm. With the filtration design and various experimental controls proposed, this model is ready for empirical proof of concept and subsequent quantitative optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: University of Ottawa Science Undergraduate Research Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.