Abstract

AbstractWe have developed a multilayer flux-transformer-based high-T C SQUID (flip-chip) magnetometer that improves signal-to-noise-ratios (SNR) in ultra-low field magnetic resonance (ulf-MR) recordings of protons in water. Direct ulf-MR-based benchmarking of the flip-chip versus a standard planar high-T C SQUID magnetometer resulted in improvement of the SNR by a factor of 2. This gain is attributable to the improved transformation coefficient (1.9 vs 5.3 nT/Φ0) that increased the signal available to the flip-chip sensor and to the lower noise at the measurement frequency (15 vs 25 fT/Hz1/2 at 4 kHz). The improved SNR can lead to better spectroscopic resolution, lower imaging times, and higher resolution in ulf-MR imaging systems based on high-T C SQUID technology. The experimental details of the sensors, calibration, and ulf-MR benchmarking are presented in this report.KeywordsChemical Mechanical PolishingSquid MagnetometerPickup CoilInput CoilSquid SensorThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.