Abstract

Thyroid cancer stem cells (CSCs) with ALDH and CD44 markers contribute to tumor growth and aggressiveness. We hypothesized that novel HSP90 inhibitors (KU711, WGA-TA) and 17-AAG can effectively target the function of thyroid CSCs in vitro and prevent migration and invasion. Validated papillary (TPC1), follicular (FTC238,WRO), and anaplastic (ACT1) human thyroid cancer cell lines were treated with 3 HSP90 inhibitors. CSCs were quantified for aldehyde dehydrogenase by flow cytometry, CD44 expression by Western blot, and thyrosphere formation assay. Cellular pathway proteins were analyzed by Western blot and migration/invasion by Boyden-chambers. WGA-TA and 17-AAG induced HSP70 compensation (not observed with KU711) on Western blot in all cell lines (>1,000 fold vs controls). Only WGA-TA degraded HSP90-Cdc37 complexing by 60-70% versus controls. Expression of HSP90 clients β-catenin, BRAF, Akt, and phospho-Akt were significantly inhibited by WGA-TA treatment (50-80%, 50-90%, >80%, and >90%) compared with controls, KU711, and 17-AAG treatment. KU711 and WGA-TA decreased CD44 expression in all cell lines (25-60% vs controls/17-AAG), decreased ALDEFLOR activity by 69-98% (P < .005), and decreased sphere formation by 64-99% (P < .05 each). Finally, cell migration was decreased by 31-98%, 100%, and 30-38%, and invasion by 75-100%, 100%, and 47% by KU711,WGA-TA, and 17-AAG treatment (P < .05) each, respectively. KU711 and WGA-TA are novel HSP90 inhibitors targeting CSC function and inhibiting cell migration/invasion in differentiated and anaplastic thyroid cancers, warranting further translational evaluation in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.