Abstract

The search for and synthesis of new antimicrobial nanostructures is important to reduce microbial incidence that induces infectious diseases and to aid in the antibiotic resistance crisis, which are two of the most pressing issues in global public health. In this work, novel, hollow, calcined titanium dioxide nanospheres (CSTiO2) were successfully synthesized for the first time through the combination of electrospinning and atomic layer deposition techniques. Poly(vinylpyrrolidone) (PVP) electrosprayed spherical particles were double-coated with alumina and titanium dioxide, and after a calcination process, hollow nanospheres were obtained with a radius of approximately 345 nm and shell thickness of 17 nm. The structural characterization was performed using electron microscopy, and X-ray diffraction and small-angle X-ray diffraction evidenced an anatase titanium dioxide crystalline structure. Thermogravimetric analysis and Fourier-transform infrared spectroscopy studies demonstrated the absence of polymer residue after the calcination process. The antimicrobial properties of the developed CSTiO2 hollow nanospheres were evaluated against different bacteria, including resistant E. coli and S. aureus strains, and when compared to commercial TiO2 nanoparticles, CSTiO2 nanospheres exhibited superior performance. In addition, the positive effect of UV irradiation on the antimicrobial activity was demonstrated.

Highlights

  • Microbial contamination and the increase of multidrug bacterial resistance have become two major current concerns for food safety and human health due to the number of food-borne diseases and nosocomial infections both in developed and developing countries worldwide [1]

  • Precursors are pulsed one by one over a substrate in the chamber and likewise purged to eliminate the unreacted substances and the by-product [18,19,20]. This is the first report on the development of metal oxide nanospheres synthesized using both electrospinning and atomic layer deposition (ALD) techniques

  • Unlike the common electrospinning process, which results in fibers by the continuous stretching of the Taylor cone through the application of a voltage to a polymeric solution with high viscosity, this case was considered an “electrospraying” process, which resulted in spherical particles due to the low-viscosity-based solution

Read more

Summary

Introduction

Microbial contamination and the increase of multidrug bacterial resistance have become two major current concerns for food safety and human health due to the number of food-borne diseases and nosocomial infections both in developed and developing countries worldwide [1]. Poly(vinylpyrrolidone) (PVP) electrosprayed spherical particles were double-coated with alumina and titanium dioxide, and after a calcination process, hollow nanospheres were obtained with a radius of approximately 345 nm and shell thickness of 17 nm.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call