Abstract

Demonstration of highly efficient organic light-emitting diodes (OLEDs) is becoming commonplace; however, there have been few reports on hole-transporting materials (HTMs) designed for highly efficient and stable green OLEDs. Here, operationally stable HTMs with high triplet energy were synthesized by incorporating dibenzothiophene and dibenzofuran into hole-transporting amino groups. The triplet energy of the amine derivative with dibenzothiophene was increased from 2.35 to 2.56 eV by introducing o,o′-quaterphenyl without impairing the stability. Since the largest triplet energy of the synthesized HTMs is 2.59 eV, the triplet excitons of green phosphorescent emitters and thermally activated delayed fluorescence (TADF) emitters are confined effectively. The operational stability of the phosphorescent OLED (PHOLED) using the synthesized HTM was about 15 times longer than that of the PHOLED using 2,2′-bis(3-ditolylaminophenyl)-1,1′-biphenyl. The optimized green PHOLED exhibits EQE of over 20% for a luminanc...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.