Abstract

A novel high-power subterahertz-range radial surface wave oscillator (SWO), in which the electron beam is emitted radially and interacts with the slow wave structure (SWS) machined on a planar plate, is presented in this paper. Compared to the axial SWO where the electron beam is emitted axially and interacts with the SWS machined on the inner wall of a cylindrical waveguide, the radial SWO has two advantages. One is that fabrication of the radial SWS is much easier than that of the axial SWO. The other is that the radial SWO is a low-impedance device, it can produce much higher current than the axial SWO when they are driven by the same driven voltage, and hence, it may generate much higher output power. Particle-in-cell simulation results demonstrate that the proposed radial SWO driven by the voltage of 312 kV can produce the terahertz wave with the mean output power of 680 MW at the frequency of 0.142 THz, it has a very pure TM01 mode and the higher modes can be effectively suppressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call