Abstract

In this paper, a novel high step-up dc–dc converter is proposed for a sustainable energy system. The proposed converter uses coupled-inductor and switched-capacitor techniques. The capacitors are charged in parallel and discharged in series by the coupled inductor to achieve high step-up voltage gain with an appropriate duty ratio. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit; low on-state resistance R <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$_{\bf {ds(on)}}$</tex></formula> of the main switch can be adopted to reduce the conduction loss. In addition, the reverse-recovery problem of the diode is alleviated by a coupled inductor. Thus, the efficiency can be further improved. The operating principle and steady-state analyses of voltage gain are discussed in detail. Finally, a prototype circuit with 24-V input voltage, 400-V output voltage, and 200-W output power is implemented in the laboratory to verify the performance of the proposed converter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call