Abstract
ABSTRACTThe growth of the wireless industry over the past ten years has created a need for good quality passive components, and in particular high Q factor inductors. There has been a large amount of work aimed at improving the quality factors of inductors on both silicon and ceramic/insulating substrates. KAIST and other research groups have explored a MEMS technique, releasing the inductor coil to create an air gap between the coil and underpass, on silicon [1]. Typically the inductor coil has been separated by a 50 to 100μm air gap and has required special processing such as a dual exposure photoresist mold [1]. In the present work, suspended inductor coils have been fabricated and characterized on an alumina ceramic substrate [2]. The gap used was only 1μm and this was enough to increase the self-resonance frequency by up to 4GHz after release. The inductor coils were created in 6–10μm thick electroplated gold and the underpass in an aluminum layer. A sacrificial LPCVD oxide layer was used as the released dielectric. In the present study a range of inductance from 1 to 30nH was explored before and after release. The Q factors achieved in this work range from 40 to 70 in the 2 to 10 GHz range, which are some of the best Q factors reported for planar inductors (see Table I). In addition, since the architecture allowed the use of three metal layers, released transformers were also fabricated. They showed promising high frequency performance, which also will be presented. Minimum insertion loss better then –2dB was achieved between 10–12 GHz. The above described process is simple, precise, and manufacturable with the ability to extend the useful range of inductors to higher frequencies (1–10 GHz).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.