Abstract

High-entropy oxides possess high theoretical capacity, stable chemical structure, making them highly promising as battery electrode materials. The limited successful synthesis of high-entropy oxide systems has hindered their further development. This study synthesized a six-component high-entropy spinel oxide (FeCoMgCrLiZn)3O4 for the first time and evaluated its electrochemical performance as an anode for lithium-ion batteries. The data show that this single-phase oxide exhibits a high reversible capacity (stabilizing at 800 mAh/g after 300 cycles at 200 mA/g), good cycling stability (800 stable cycles at 2000 mA/g without significant capacity decay), and excellent rate performance. This study expands the high-entropy oxide family and provides a potential strategy for developing next-generation energy storage materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.