Abstract

The Fenton reaction is a commonly used technique for the remediation of industrial pollution, but hydrogen peroxide required in this reaction is highly hazardous and the enormous volume of iron sludge byproducts increases significantly the cost of pollution remediation. To address this issue, this study examined the efficacy of the electro-Fenton reaction in degrading pollutants utilizing a complex of graphene and a high-entropy ceramic catalyst, and evaluated the potential of functionalized high-entropy materials for the decomposition of pollutants. The degradation of organic water contaminants was investigated utilizing a novel composite of graphene and (AlCrCuFeNi)O high-entropy ceramics, to increase the generation of H2O2 in the electro-Fenton process. Rapid calcination produced five-element (AlCrCuFeNi)O high-entropy ceramics to enhance both the electrocatalytic activity and the stability. Because of the high electro-Fenton efficiency of the high-entropy ceramics, the graphene/(AlCrCuFeNi)O HEC cathode effectively removed 99% methyl orange within 90 min of operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call