Abstract

Heavy metal water pollution is a global concern in recent years. Copper is a toxic metal at higher concentrations (> 20 μg /g) and needs to be removed using ion exchanger systems. This study investigates the removal efficiencies of copper by the non-metallic fraction (NMF) waste printed circuit boards (PCBs). The high maximum adsorption capacity of copper by the PCB-derived material after activation with KOH was 2.65 mmol/g, and the experimental isotherm was best correlated by the Temkin model. Finally, this study presents a novel dual site adsorption/ion exchange mechanism, wherein the potassium (from the activation) and calcium (present in the structure) served as ion exchange sites for the copper in the solution. Therefore, this recycling study, focusing on cyclic environmental management, converts a major waste material to an activated ion exchange resin (high capacity) for the removal of copper from wastewater solutions and successfully regenerates the resin for re-use while producing an acidic copper solution for recovery by electrolysius or chemical salt precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call