Abstract

The effect of mesoporosity formation and acidity modification have been investigated by desilication and combined desilication–dealumination treatments over highly siliceous zeolite HZSM-5 (Si/Al = 200) and its catalytic performance has been studied in the conversion of methanol to propylene (MTP) reaction. Desilication of a conventional microporous HZSM-5 catalyst was performed using NaOH, mixtures of NaOH and tetrapropylammonium hydroxide (TPAOH), and mixtures of NaOH and tetrabutylammonium hydroxide (TBAOH) with different ratios. Subsequent mild steaming treatment has been used to modify acidity of the selected samples. The physicochemical properties of all samples were characterized by XRD, FE-SEM, BET and NH3-TPD methods. Textural and acidity properties confirmed that TBAOH is more effective than TPAOH in the mesoporosity formation, micropore volume preservation, and acidity modification. Steaming treatment after desilication over the sample with TPAOH/(NaOH + TPAOH) ratio of 0.4, led to increase in selectivities to propylene from 38.4 to 41.3%, and total light olefins from 69.4 to 76.6%, while it led to decrease in C5+ components selectivity from 14.8 to 10.1%. The combined alkaline-steam treatment over the sample with TBAOH/(NaOH + TBAOH) ratio of 0.2 compared to the parent one led to considerable higher selectivities to propylene (44.8 vs. 30.7%), total light olefins (84.1 vs. 57.9%), as well as lower selectivities to C5+ components (7.4% vs. 27.1%). Moreover, this sample showed double lifetime (830 h) in MTP reaction compared to the conventional micropore ZSM-5 catalyst (425 h). The results showed that desilication led to a remarkable mesoporosity development, while steaming treatment generally influenced on the HZSM-5 acidity. Therefore, the combined alkaline-steam treatment leads to HZSM-5 zeolite formation with tailored pore architecture and surface acidic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.