Abstract

A new heteroleptic complex series of tin was synthesized by the salt metathesis reaction of SnX2 (X = Cl, Br, and I) with aminoalkoxide and various N-alkoxy-functionalized carboxamide ligands. The complexes, [ClSn(dmamp)]2 (1), [BrSn(dmamp)]2 (2), and [ISn(dmamp)]2 (3), were prepared from the salt metathesis reaction of SnX2 with one equivalent of dmamp; [Sn(dmamp)(empa)]2 (4), [Sn(dmamp)(mdpa)]2 (5), and [Sn(dmamp)(edpa)]2 (6) were prepared via the salt metathesis reaction using complex 2 with one equivalent of N-alkoxy-functionalized carboxamide ligand. Complexes 1–5 displayed dimeric molecular structures with tin metal centers interconnected by μ2–O bonding via the alkoxy oxygen atom. The molecular structures of complexes 1–5 showed distorted trigonal bipyramidal geometries with lone pair electrons in the equatorial position. Using complex 6 as a tin precursor, SnOx films were deposited by chemical solution deposition (CSD) and subsequent post-deposition annealing (PDA) at high temperatures. SnO and SnO2 films were selectively obtained under controlled PDA atmospheres of argon and oxygen, respectively. The SnO films featured a tetragonal romarchite structure with high crystallinity and a preferred growth orientation along the (101) plane. They also exhibited a lower transmittance of >52% at 400 nm due to an optical band gap of 2.9 eV. In contrast, the SnO2 films exhibited a tetragonal cassiterite crystal structure and an extremely high transmittance of >97% at 400 nm was observed with an optical band gap of 3.6 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.