Abstract
The development of fungicides with low cross resistance, high efficacy and low resistance plays a central role in protecting crops, reducing yield losses, improving quality and maintaining global food security. Based on this important role, after a systematic optimization strategy, novel heterocyclic amide derivatives bearing diphenylmethyl fragment were screened, synthesized and verified with the spectrographic and x-ray diffraction analysis. In this study, the aforementioned optimization obtained compound B19 that was measured for antifungal activity against Rhizoctonia solani (median effective concentration, EC50 = 1.11 μg mL-1). Meanwhile, the anti-R. solani protective effect (79.34%) of compound B19 was evaluated in vivo at 100 μg mL-1, which is comparable to that of the control agent fluxapyroxad (80.67%). Thence, morphological observations revealed that compound B19 induced mycelium disruption and shrinking, mitochondrial number reduction and apoptosis acceleration, consistent with the results of the mitochondrial membrane potential and cell membrane permeability. Further investigations found that the potential target enzyme of compound B19 was SDH, which exerted fluorescence quenching dynamic curves similar to that of the commercialized SDHI fluxapyroxad. Additionally, research by molecular docking and MD simulations demonstrated that compound B19 had a similar binding mode acting on the surrounding residues in the SDH active pocket to that offluxapyroxad. The above results demonstrated that heterocyclic amide derivatives containing a diphenylmethyl moiety are promising scaffolds for targeting SDH of fungi and provide valuable antifungal leads with the potential to develop new SDH inhibitors. © 2024 Society of Chemical Industry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.