Abstract

Based on the concept of the active drug delivery of micro- and nanomotors and the longer cycle time in the blood for drug-loaded tubular particles, it is important to develop novel tubular micromotors that could increase drug loading and achieve more effective treatments in the biomedical field. Here, a novel kind of mesoporous tubular micromotor used to load heparin (Hep) and formed via template-assisted electrochemical deposition is presented. Firstly, the mesoporous tubular micromotors were composed of poly(3,4-ethylenedioxythiophene) (PEDOT), mesoporous silica (MS) and manganese dioxide (MnO2), and were simply fabricated via template-assisted electrochemical growth. Then, the drug Hep was loaded into PEDOT/MS/MnO2via a simple soaking process. Finally, the release process, cytotoxicity, and blood compatibility tests and motion study for these mesoporous tubular micromotors of PEDOT/MS/MnO2-Hep were performed. Results indicated that the micromotors we prepared showed good controlled release of Hep, anticoagulant effects, non-cytotoxicity and autonomous motion ability. The new drug carrier and motion mode will give rise to more potential applications of Hep in the biomedical field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call