Abstract

AbstractMethyl‐tri(phenylethynyl)silane (MTPES) was successfully synthesized by the reaction of lithium phenylacetylide with methyltrichlorosilane. The structure was characterized by HRMS, FTIR, 1H‐NMR, 13C‐NMR, 29Si‐NMR, and elementary analysis. Thermal cure process was monitored by DSC, DMA, and FTIR. MTPES was heated to free flowing liquid around 130°C and thermally polymerized at 327–377°C to form thermoset. Thermal and oxidative properties were evaluated by TGA analysis. Thermoset exhibits extremely high heat‐resistance and TGA curve in nitrogen shows the temperature of 5% weight loss (Td5) of 695°C and total weight loss at 800°C of 7.1%. TGA shows a high Td5 of 565°C even in air, although the total weight loss at 800°C was 56.1% of the initial weight, much higher than that in nitrogen. The high heat resistance of MTPES was ascribed to crosslinking reaction concerning ethynyl groups. Aging studies performed at elevated temperatures in air on a thermoset showed that MTPES is oxidatively stable to 300°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2488–2492, 2006

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call