Abstract

Rough surface topographies on implants attract macrophages but the influence of topography on macrophage fusion to produce multinucleated giant cells (MGC) and foreign body giant cells (FBGC) is unclear. Two rough novel grooved substrata, G1 and G2, fabricated by anisotropic etching of Silicon <110> crystals without the use of photolithographic patterning, and a control smooth surface (Pol) were produced and replicated in epoxy. The surfaces were compared for their effects on RAW264.7 macrophage morphology, gene expression, cyto/chemokine secretion, and fusion for one and five days. Macrophages on grooved surfaces exhibited an elongated morphology similar to M2 macrophages and increased cell alignment with surface directionality, roughness and cell culture time. Up-regulated expression of macrophage chemoattractants at gene and protein level was observed on both grooved surfaces relative to Pol. Grooved surfaces showed time-dependent increase in soluble mediators involved in cell fusion, CCL2 and MMP-9, and an increased proportion of multinucleated cells at Day 5. Collectively, this study demonstrated that a rough surface with surface directionality produced changes in macrophage shape and macrophage attractant chemokines and soluble mediators involved in cell fusion. These in vitro results suggest a possible explanation for the observed accumulation of macrophages and MGCs on rough surfaced implants in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2243-2254, 2016.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.