Abstract

Novel versatile hydrogels were designed and composited based on covalent bond and noncovalent bond self-assembly of poly(methacrylic acid) (PMAA) networks and nanohybrids doped with graphene oxide (GO). The structures and properties of the neat PMAA and the prepared PMAA/GO hydrogels were characterized and analyzed in detail, using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, swelling and cationic absorption, etc. The swelling results showed that the water penetration follows the non-Fick transport mechanism based on swelling kinetics and diffusion theory. The swelling capacity of PMAA and composited PMAA/GO hydrogels toward pH, Na+, Ga2+, and Fe3+ was investigated; the swelling ratio was tunable between 4.44 and 36.44. Taking methylene blue as an example, the adsorption capacity of PMAA/GO hydrogels was studied. Nanohybrid doped GO not only self-associated with PMAA via noncovalent bonding interactions and had a tunable swelling ratio, but also interacted with water molecules via electrostatic repulsion, offering a pH response of both the network and dye absorption. Increases in pH caused a rise in equilibrium swelling ratios and reduced the cumulative cationic dye removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.