Abstract
Uncertainty propagation (UP) is crucial for assessing the impact of input uncertainty on structural responses, holding significant importance in engineering applications. However, achieving accurate and efficient UP remains challenging, especially for highly nonlinear structures. Bayesian neural networks (BNN) have gained attention for addressing UP issues, yet current BNN models only utilize input samples and corresponding structural responses for training. However, incorporating gradients of structural responses with respect to input samples provides valuable information. This study proposes a novel approach called gradient-enhanced Bayesian neural networks (GEBNN) to tackle UP tasks. In the GEBNN, a modified evidence lower bound (MELBO) loss is developed to consider both structural responses and gradient information simultaneously. This includes disparities between actual and predicted responses, as well as disparities between actual and predicted derivatives. Additionally, a gradient screening strategy based on the marginal probability density functions (PDFs) of input samples is established to identify significant derivative data for GEBNN training. Once the GEBNN is configured, it is utilized to replace the computationally intensive finite element model to efficiently provide UP results. Various applications, including nonlinear numerical examples, and mechanical, civil, and aeronautical structures, are presented to demonstrate the effectiveness of the GEBNN. The results show that the GEBNN significantly enhances the computational accuracy of the BNN in solving UP tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.