Abstract

AimsGPR40 is a free fatty acid receptor that regulates glucose-dependent insulin secretion at pancreatic β-cells and glucagon-like peptide-1 (GLP-1), one of the major incretins, secretion at the endocrine cells of the gastrointestinal tract. We investigated the synergistic effect of AS2575959, a novel GPR40 agonist, in combination with sitagliptin, a major dipeptidyl peptidase-IV (DPP-IV) inhibitor, on glucose-dependent insulin secretion and GLP-1 secretion. In addition, we investigated the chronic effects of AS2575959 on whole-body glucose metabolism. Main methodsWe evaluated acute glucose metabolism on insulin and GLP-1 secretion using an oral glucose tolerance test (OGTT) as well as assessed the chronic glucose metabolism in diabetic ob/ob mice following the repeated administration of AS2575959. Key findingsWe discovered the novel GPR40 agonist sodium [(3S)-6-({4′-[(3S)-3,4-dihydroxybutoxy]-2,2′,6′-trimethyl[1,1′-biphenyl]-3-yl}methoxy)-3H-spiro[1-benzofuran-2,1′-cyclopropan]-3-yl]acetate (AS2575959) and found that the compound influenced glucose-dependent insulin secretion both in vitro pancreas β-cell-derived cells and in vivo mice OGTT. Further, we observed a synergistic effect of AS2575959 and DPP-IV inhibitor on insulin secretion and plasma GLP-1 level. In addition, we discovered the improvement in glucose metabolism on repeated administration of AS2575959. SignificanceTo our knowledge, this study is the first to demonstrate the synergistic effect of a GPR40 agonist and DPP-IV inhibitor on the glucose-dependent insulin secretion and GLP-1 concentration increase. These findings suggest that GPR40 agonists may represent a promising therapeutic strategy for the treatment of type 2 diabetes mellitus, particularly when used in combination with DPP-IV inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call