Abstract

In this paper, the global robust exponential stability for a class of delayed BAM neural networks with norm-bounded uncertainty is studied. Some less conservative conditions are presented for the global exponential stability of BAM neural networks with time-varying delays by constructing a new class of Lyapunov functionals combined with free-weighting matrices. This novel approach, based on the linear matrix inequality (LMI) technique, removes some existing restrictions on the system’s parameters, and the derived conditions are easy to verify via the LMI toolbox. Comparisons between our results and previous results admit that our results establish a new set of stability criteria for delayed BAM neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.