Abstract
The problem of global exponential stability for recurrent neural networks with time-varying delay is investigated. By dividing the time delay interval [0,τ(t)] intoK+1dynamical subintervals, a new Lyapunov-Krasovskii functional is introduced; then, a novel linear-matrix-inequality (LMI-) based delay-dependent exponential stability criterion is derived, which is less conservative than some previous literatures (Zhang et al., 2005; He et al., 2006; and Wu et al., 2008). An illustrate example is finally provided to show the effectiveness and the advantage of the proposed result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.