Abstract

Abstract Low Temperature Co-fired Ceramics (LTCC) have excellent high-frequency characteristics and have widely been used for microwave electronic components. By lowering the sintering temperature of the ceramics used as insulating layers, LTCC was co-fired with a high-conductivity wiring conductor, such as Cu or Ag. LTCC substrate has been expected as one of the most promising technologies to realize miniaturization of RF circuits in the field of wireless communications. There is no limitation to demand for further downsizing of RF circuits, suppression of electric loss and high mechanical strength of the substrate. However, conventional LTCC materials for substrates contain glass frit which causes defects, such as pores or cracks, and low mechanical strength. In this work, we have developed a novel LTCC material system BaO-Al2O3-SiO2-MnO-TiO2, without any glass frits. The material was co-fired with cupper electrodes, which have low resistivity and show less diffusion than silver in LTCC, under a low-oxygen partial pressure atmosphere (mixture of N2 and H2) at 980°C. Thin layers (8μm) of the material showed high insulating resistivity and reliability due to few defects, such as pores, in LTCC. Its dielectric and mechanical properties were measured as 6.8 (low-εr), 350 at 3GHz (high-Q-value) and 341MPa (high mechanical strength) respectively. This LTCC material will contribute to further miniaturizing of microwave applications and integration of passive elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.