Abstract

AbstractNovel glass fiber‐reinforced composites were prepared from E‐glass fibers and perfluoropolyether (PFPE), polyurethane acrylate, and methacrylate resins. The PFPE resins were synthesized by a two‐step process and formulated with reactive acrylic diluents obtaining two compositions with different viscosity and fluorine content. These formulations were photocrosslinked by UV‐A radiation and characterized by tensile and dynamic‐mechanical properties as well as by impact resistance. The two UV cured fluoropolymer compositions are high modulus (> 1 GPa), polyphasic materials characterized by a fracture toughness higher than conventional polymer matrices, like epoxies and unsaturated polyesters. Unidirectional laminate composites were also prepared by hand lay‐up and crosslinked both photochemically and thermally. Mechanical characterization of glass fiber‐reinforced composites was carried out by tensile tests and shear adhesion measurements, showing a good fluoropolymer‐glass adhesion strength (ca. 9 MPa). Surface characterization of composites by static contact angle measurements allowed the calculation of the total surface tension γs according to Wu's harmonic mean approximation. Surface tension is very low (< 20 mN/m) suggesting a preferential stratification of PFPE segments at the material‐air interface. magnified image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call