Abstract

Seamlessly stitching two-dimensional (2D) materials may lead to the emergence of novel properties triggered by the interactions at the interface. In this work, a series of 2D lateral heterostructures (LHSs), namely germanene-arsenene (Gem-As8-m) and germanene-antimonene (Gem-Sb8-m), are investigated using first-principles calculations. The results demonstrate a strong interline-dependence of the electronic and magnetic properties. Specifically, the LHS formation along an armchair line preserves the non-magnetic nature of the original materials. However, this is an efficient approach to open the electronic band gap of the germanene monolayer, where band gaps as large as 0.74 and 0.76 eV are induced for Ge2-As6 and Ge2-Sb6 LHSs, respectively. Meanwhile, magnetism may appear in the zigzag-LHSs depending on the chemical composition (m = 3, 4, 5, and 6 for germanene-arsenene and m = 2, 3, 4, 5, and 6 for germanene-antimonene), where total magnetic moments between 0.13 and 0.50 μB are obtained. Herein, magnetic properties are produced mainly by the spin-up state of Ge atoms at the interface, where a small contribution comes from As(Sb) atoms. Spin-resolved band structures show a multivalley profile in both the valence band and the conduction band with a topological insulator-like behavior, where the interface states are derived mainly from the interface Ge-pz state. The results introduce new 2D lateral heterostructures with novel electronic and magnetic properties to allow new functionalities, which could be further explored for optoelectronic and spintronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.