Abstract
Dendritic cells (DCs) are central for the initiation and regulation of appropriate immune responses. While several studies suggest important regulatory roles of sialoglycans in DC biology, our understanding is still inadequate primarily due to a lack of appropriate models. Previous approaches based on enzymatic- or metabolic-glycoengineering and primary cell isolation from genetically modified mice have limitations related to specificity, stability, and species differences. This study addresses these challenges by introducing a workflow to genetically glycoengineer the human DC precursor cell line MUTZ-3, described to differentiate and maturate into fully functional dendritic cells, using CRISPR-Cas9, thereby providing and validating the first isogenic cell model for investigating glycan alteration on human DC differentiation, maturation, and activity. By knocking out (KO) the ST6GAL1 gene, we generated isogenic cells devoid of ST6GAL1-mediated α(2,6)-linked sialylation, allowing for a comprehensive investigation into its impact on DC function. Glycan profiling using lectin binding assay and functional studies revealed that ST6GAL1 KO increased the expression of important antigen presenting and co-stimulatory surface receptors and a specifically increased activation of allogenic human CD4 + T cells. Additionally, ST6GAL1 KO induces significant changes in surface marker expression and cytokine response to TNFα-induced maturation, and it affects migration and the endocytic capacity. These results indicate that genetic glycoengineering of the isogenic MUTZ-3 cellular model offers a valuable tool to study how specific glycan structures influence human DC biology, contributing to our understanding of glycoimmunology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.