Abstract

Alzheimer's disease (AD) is a common neurodegenerative disease and mild cognitive impairment (MCI) is considered as the prodromal stage of AD. Previous studies showed that changes in the neurotrophin signaling pathway could lead to cognitive decline in AD. However, the association of single nucleotide polymorphisms (SNPs) in genes that are involved in this pathway with AD progression from MCI remains unclear. We investigated the associations between SNPs involved in the neurotrophin signaling pathway with AD progression. We performed single-locus analysis to identify neurotrophin-signaling-related SNPs associated with the AD progression using 767 patients from the Alzheimer's Disease Neuroimaging Initiative study and 1,373 patients from the National Alzheimer's Coordinating Center study. We constructed polygenic risk scores (PRSs) using the identified independent non-APOE SNPs and evaluated its prediction performance on AD progression. We identified 25 SNPs significantly associated with AD progression with Bayesian false-discovery probability ≤0.8. Based on the linkage disequilibrium clumping and expression quantitative trait loci analysis, we found 6 potentially functional SNPs that were associated with AD progression independently. The PRS analysis quantified the combined effects of these SNPs on longitudinal cognitive assessments and biomarkers from cerebrospinal fluid and neuroimaging. The addition of PRSs to the prediction model for 3-year progression to AD from MCI significantly increased the predictive accuracy. Genetic variants in the specific genes of the neurotrophin signaling pathway are predictors of AD progression. eQTL analysis supports that these SNPs regulate expression of key genes involved in the neurotrophin signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call