Abstract
AbstractAn effective method for optimizing high-performance concrete mixtures can significantly benefit the construction industry. However, traditional proportioning methods are not sufficient because of their expensive costs, limitations of use, and inability to address nonlinear relationships among components and concrete properties. Consequently, this research introduces a novel genetic algorithm (GA)–based evolutionary support vector machine (GA-ESIM), which combines the K-means and chaos genetic algorithm (KCGA) with the evolutionary support vector machine inference model (ESIM). This model benefits from both complex input-output mapping in ESIM and global solutions with faster convergence characteristics in KCGA. In total, 1,030 data points from concrete strength experiments are provided to demonstrate the application of GA-ESIM. According to the results, the newly developed model successfully produces the optimal mixture with minimal prediction errors. Furthermore, a graphical user interface is uti...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.