Abstract

Recurrent pregnancy loss is a frequently occurring human infertility-related disease affecting ~1% of women. It has been estimated that the cause remains unexplained in >50% cases which strongly suggests that genetic factors may contribute towards the phenotype. Concerning its molecular aetiology numerous studies have had limited success in identifying the disease’s genetic causes. This might have been due to the fact that hundreds of genes are involved in each physiological step necessary for guaranteeing reproductive success in mammals. In such scenario, next generation sequencing provides a potentially interesting tool for research into recurrent pregnancy loss causative mutations.The present study involved whole-exome sequencing and an innovative bioinformatics analysis, for the first time, in 49 unrelated women affected by recurrent pregnancy loss. We identified 27 coding variants (22 genes) potentially related to the phenotype (41% of patients). The affected genes, which were enriched by potentially deleterious sequence variants, belonged to distinct molecular cascades playing key roles in implantation/pregnancy biology.Using a quantum chemical approach method we established that mutations in MMP-10 and FGA proteins led to substantial energetic modifications suggesting an impact on their functions and/or stability.The next generation sequencing and bioinformatics approaches presented here represent an efficient way to find mutations, having potentially moderate/strong functional effects, associated with recurrent pregnancy loss aetiology. We consider that some of these variants (and genes) represent probable future biomarkers for recurrent pregnancy loss.

Highlights

  • Recurrent pregnancy loss (RPL), defined as at least two/three pregnancy losses before the 20th week of gestation, is a frequently occurring human infertility-related disease affecting ~0.8% to 1.4% of women in the general population [1]

  • Despite significant advances in the clinical and biochemical diagnosis of human infertility, it has been estimated that the cause remains unexplained in 35% to 60% of RPL women, thereby strongly suggesting that genetic, epigenetic and environmental factors may contribute towards the RPL phenotype [2,3]

  • The statistical comparative analysis of these proportions revealed that the RPL-234 list is strongly enriched by this kind of variants (128 variants observed with 99 expected, p = 0.0005)

Read more

Summary

Introduction

Recurrent pregnancy loss (RPL), defined as at least two/three pregnancy losses before the 20th week of gestation, is a frequently occurring human infertility-related disease affecting ~0.8% to 1.4% of women in the general population [1] (and references therein). Despite significant advances in the clinical and biochemical diagnosis of human infertility, it has been estimated that the cause remains unexplained in 35% to 60% of RPL women, thereby strongly suggesting that genetic, epigenetic and environmental factors may contribute towards the RPL phenotype [2,3]. Concerning the molecular aetiology of RPL, several studies have had limited success in identifying the disease’s genetic causes. Numerous genes (e.g. AMN, THBD, PROCR, VEGF, TP53, NOS3, JAK2) coding regions have been studied, in a significant number of patients, but causative mutations have rarely been described [4,5,6,7] (and references therein). It has been shown that oocyte fecundation in mammals, as well as embryo pre-implantation, implantation and early post-implantation molecular pathways are controlled by hundreds of molecules which are finely regulated in terms of gene expression [8,9,10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call