Abstract

Three new gemini surfactants containing mono-, di-, and trioxyethylene spacer chains have been synthesized. Small angle neutron scattering (SANS) cross sections from the micellar aggregates of these dimeric amphiphiles Br-, n-C16H33NMe2+-CH2(CH2OCH2)(p)CH2-N+Me2-n-C16H33,Br-, (where p = 1, 2, and 3) in aqueous media (D2O) have been measured. The data have been analyzed using the Hayter and Penfold model for macro-ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis showed that the micellar morphology depends on both the nature and the length of the spacer unit. Detailed analysis of the data further indicates that the introduction of oxyethylene spacer is not sufficient enough to prevent looping of the spacer chain. Thus the average separation between the dimethylammonium ion headgroups is considerably lower than is expected from a fully extended conformation of the spacer chain. The micelles from these surfactants have also been characterized in terms of their critical micelle concentrations (cmc), microviscosities, and micropolarities on the basis of the information provided by micelle-solubilized fluorescent probes. These results indicate little difference in their micellar properties such as cmc, microviscosity, and micropolarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call