Abstract

In fish, the onset of puberty, the transition from juvenile to sexually reproductive adult animals, is triggered by the activation of pituitary gonadotropin secretion and its timing is influenced by external and internal factors that include the growth/adiposity status of the animal. Kisspeptins have been implicated in the activation of puberty but peripheral signals coming from the immature gonad or associated to the metabolic/nutritional status are also thought to be involved. Therefore we hypothesize the importance of the galinergic system in the brain and testis of pre-pubertal male sea bass as a candidate to translate the signals leading to activation of testicular maturation. Here, the transcripts for four galanin receptors (GALR), named GALR1a, 1b, 2a and 2b, were isolated from European sea bass, Dicentrarchus labrax. Phylogenetic analysis confirmed the previously reported duplication of GALR1 in teleost fish, and unravelled the duplication of GALR2 in teleost fish and in some tetrapod species. Comparison with human showed that the key amino acids involved in ligand binding are present in the corresponding GALR1 and GALR2 orthologs. Transcripts for all four receptors are expressed in brain and testes of adult fish with GALR1a and GALR1b abundant in testes and hardly detected in ovaries. In order to investigate whether GALR1 dimorphic expression was dependent on steroid context we evaluated the effect of 11-ketotestosterone and 17β-estradiol treatments on the receptor expression in brain and testes of pre-pubertal males. Interestingly, steroid treatments had no effect on the expression of GALRs in the brain while in the testes, GALR1a and GALR1b were significantly up regulated by 11KT. Altogether, these results support a role for the galaninergic system, in particular the GALR1 paralog, in fish reproductive function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.