Abstract

A series of functional guanidinium-based ionic liquids (FGBILs) that contain both Lewis acid and basic sites was prepared by a simple method, and used as catalysts for the synthesis of cyclic carbonates through the cycloaddition of CO2 to epoxides in the absence of co-catalyst and solvent. Propylene oxide conversion was near completion at 130°C and 2.5MPa in 2h when [TMGC2H4NH2]Br was used as catalyst. The effects of functional groups and counter anions on catalytic performance were investigated. The synergistic effect of polarization by hydrogen bonding and the nucleophilic attack by bromide anion account for the facile ring-opening of epoxide. Furthermore, the protocol is applicable to a variety of terminal epoxides, producing the corresponding cyclic carbonates in high yield and selectivity. It is envisaged that the metal- and solvent-free process using a single catalyst has high potential for large-scale fixation of CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.