Abstract

The DNA methyltransferase 1-associated protein (DMAP1) was initially identified as an activator of DNA methyltransferase 1 (DNMT1), a conserved eukaryotic enzyme involved in diverse molecular processes, including histone acetylation and chromatin remodeling. However, the roles and regulatory mechanisms of DMAP1 in filamentous pathogens are still largely unknown. Here, employing bioinformatic analysis, we identified PsDMAP1 in P. sojae, which features a canonical histone tail-binding domain, as the ortholog of the human DMAP1. A phylogenetic analysis of DMAP1 protein sequences across diverse eukaryotic organisms revealed the remarkable conservation and distinctiveness of oomycete DMAP1 orthologs. Homozygous knockout of PsDMAP1 resulted in the mortality of P. sojae. Furthermore, silencing of PsDMAP1 caused a pronounced reduction in mycelial growth, production of sporangia and zoospore, cystospore germination, and virulence. PsDMAP1 also played a crucial role in the response of P. sojae to reactive oxygen species (ROS) and osmotic stresses. Moreover, PsDMAP1 interacted with DNA N6-methyladenine (6 mA) methyltransferase PsDAMT1, thereby enhancing its catalytic activity and effectively regulating 6 mA abundance in P. sojae. Our findings reveal the functional importance of PsDAMP1 in the development and infection of P. sojae, and this marks the initial exploration of the novel 6 mA regulator PsDMAP1 in plant pathogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.