Abstract

To compensate the oil demand and pollution, scientists explore biodiesel as a pollution free alternate energy. But depending on one particular species of feedstock will lead to its extinction like diesel. For this intent, this research proposes a novelty on blending of binary non-edible high oil yielding species. As biodiesel is a natural constituent with elevated oxygen content, a stability analysis has to be performed to diminish its rapid decay. For stabilizing fuel properties synthetic antioxidants have been involved as inhibitors. Previous studies have been performed on the stability analysis individually as oxidation, thermal and storage stability without analyzing them mutually. This research fills the key gap by deeper mutual stability analysis, as the output parameters of these three stabilities are interrelated. Few samples have shown best stability output parameters which challenges in narrowing the best blend. To face this task, a multi objective optimization study has been done. NOx emission has been reduced with the aid of antioxidants as a twin reward. Two novel assessment tools for validating are, i) FTIR, by which the impact of molecular arrangements on stability variation has been evaluated and ii) Using Infrared Imaging Technique, by which the NOX has been analyzed visually correlating the emission level and engine combustion temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.