Abstract

Model-based optimization of simulated moving bed reactors (SMBRs) requires efficient solvers and significant computational power. Over the past years, surrogate models have been considered for such computationally demanding optimization problems. In this sense, artificial neural networks-ANNs-have found applications for modeling the simulated moving bed (SMB) unit but not yet been reported for the reactive SMB (SMBR). Despite ANNs' high accuracy, it is essential to assess its capacity to represent the optimization landscape well. However, a consistent method for optimality assessment using surrogate models is still an open issue in the literature. As such, two main contributions can be highlighted: the SMBR optimization based on deep recurrent neural networks (DRNNs) and the characterization of the feasible operation region. This is done by recycling the data points from a metaheuristic technique-optimality assessment. The results demonstrate that the DRNN-based optimization can address such complex optimization while meeting optimality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.