Abstract

A new wavelet transform (WT) is introduced based on the fractional properties of the traditional Fourier transform. The new wavelet follows from the fractional Fourier order which uniquely identifies the representation of an input function in a fractional domain. It exploits the combined advantages of WT and fractional Fourier transform (FrFT). The transform permits the identification of a transformed function based on the fractional rotation in time-frequency plane. The fractional rotation is then used to identify individual fractional daughter wavelets. This study is, for convenience, limited to one-dimension. Approach for discussing two or more dimensions is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.