Abstract

Reflection theory has been long established for over decades targeted at microwave and radio frequency (RF) applications. With ultra-high-bandwidth applications emerging, such as 112 Gb/s and higher speed Ethernet protocols, discontinuities in high-speed channels negatively impact signal quality, where reflections become one of the most critical concerns in high-speed designs. In this article, for the first time, we analyzed the traditional reflection theory and proposed and verified a new formulation, which exhibits the reflection-related parameters explicitly, indicating where design optimization can be made for high-bandwidth applications using the backtracked propagation method. Our closed-form formulation is applied to high-speed channel examples, where effective mitigation of negative impact from reflections on signal integrity can be identified to be used as a prelayout channel design guide. Our proposed formulation of the reflection theory provides more accurate prediction of high-speed channel behavior to minimize the negative signal integrity impact from reflections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.