Abstract

Background: Drug resistance in Candida species, has emerged as a major problem in the public health system worldwide. Application of nanoparticles is proposed as a novel and potential agent for reduction of drug resistance burdens. Objectives: The current study was conducted to evaluate the effects of zinc oxide nanoparticles (ZnO NPs containing chitosan and linoleic acid) on hyphae cell wall proteins (Hwp1) gene expression, a crucial gene in pathogenicity of Candida albicans, and cytotoxicity on human hepatocyte carcinoma (HepG2) cells as well as the production of Reactive Oxygen Species (ROS). Methods: The effects of novel ZnO NPs on expression of Hwp1 gene of C. albicans was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR) in comparison to fluconazole as a standard drug. Reactive Oxygen species production was examined in macrophages treated with ZnO NPs relative to non-treated cells. Also, the cytotoxicity effects of ZnO NPs were assessed using the MTT assay against HepG2 cell line. Results: The findings indicated that ZnO NPs significantly decreased the level of Hwp1 gene expression in standard and clinical isolates of C. albicans. Increased level of ROS production in macrophages was found in the presence of ZnO NPs in concentration-dependent manner compared to the control group without exposure of ZnO NPs (P = 0.001). Furthermore, ZnO NPs did not show cytotoxicity activity on HepG2 cells at different concentrations (P > 0.05). Conclusions: Taken together, the newly synthesized ZnO NPs may be a suitable candidate for inhibition of the critical gene responsible for biofilm dispersion and the control of Candida infection with limited cytotoxicity on human cells. However, more studies are required for support of its effect in vitro and in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call