Abstract

ObjectiveThis study aims to incorporate 2:1 MgAl and 2:1 CaAl layered double hydroxides (LDHs) in experimental dental-composites to render them fluoride rechargeable. The effect of LDH on fluoride absorption and release, and their physico-mechanical properties are investigated. Methods2:1 CaAl and 2:1 MgAl LDH-composite discs prepared with 0, 10 and 30wt% LDH were charged with fluoride (48h) and transferred to deionized water (DW)/artificial saliva (AS). Fluoride release/re-release was measured every 24h (ion-selective electrodes) with DW/AS replaced daily, and samples re-charged (5min) with fluoride every 2 days. Five absorption-release cycles were conducted over 10 days. CaAl and MgAl LDH rod-shaped specimens (dry and hydrated; 0, 10 and 30wt%) were studied for flexural strength and modulus. CaAl and MgAl LDH-composite discs (0, 10, 30 and 45wt% LDH) were prepared to study water uptake (over 7 weeks), water desorption (3 weeks), diffusion coefficients, solubility and cation release (ICP-OES). ResultsCaAl LDH and MgAl LDH-composites significantly increased the amount of fluoride released in both media (P<0.05). In AS, the mean release after every recharge was greater for MgAl LDH-composites compared to CaAl LDH-composites (P<0.05). After every recharge, the fluoride release was greater than the previous release cycle (P<0.05) for all LDH-composites. Physico-mechanical properties of the LDH-composites demonstrated similar values to those reported in literature. The solubility and cation release showed a linear increase with LDH loading. SignificanceLDH-composites repeatedly absorbed/released fluoride and maintained desired physico-mechanical properties. A sustained low-level fluoride release with LDH-composites could lead to a potential breakthrough in preventing early stage carious-lesions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call