Abstract

BackgroundP-glycoprotein (ABCB1) is an ATP-binding cassette transporter that plays an important role in the clearance of drugs and xenobiotics and is associated with multi-drug resistance in cancer. Although several P-glycoprotein structures are available, these are either at low resolution, or represent mutated and/or quiescent states of the protein.ResultsIn the post-hydrolytic state the structure of the wild-type protein has been resolved at about 8 Å resolution. The cytosolic nucleotide-binding domains (NBDs) are separated but ADP remains bound, especially at the first NBD. Gaps in the transmembrane domains (TMDs) that connect to an inner hydrophilic cavity are filled by density emerging from the annular detergent micelle. The NBD-TMD linker is partly resolved, being located between the NBDs and close to the Signature regions involved in cooperative NBD dimerization. This, and the gap-filling detergent suggest steric impediment to NBD dimerization in the post-hydrolytic state. Two central regions of density lie in two predicted drug-binding sites, implying that the protein may adventitiously bind hydrophobic substances even in the post-hydrolytic state. The previously unresolved N-terminal extension was observed, and the data suggests these 30 residues interact with the headgroup region of the lipid bilayer.ConclusionThe structural data imply that (i) a low basal ATPase activity is ensured by steric blockers of NBD dimerization and (ii) allocrite access to the central cavity may be structurally linked to NBD dimerization, giving insights into the mechanism of drug-stimulation of P-glycoprotein activity.

Highlights

  • P-glycoprotein (ABCB1) is an Adenosine triphosphate (ATP)-binding cassette transporter that plays an important role in the clearance of drugs and xenobiotics and is associated with multi-drug resistance in cancer

  • There are many atomic models and experimental density maps for P-gp deposited in the Protein Databank (PDB) and Electron Microscopy Databank (EMDB) [6,7,8,9,10,11,12,13,14], and data are available at a resolution allowing a direct modeling of the amino acid residue side-chains [6,7,8,9,10,11,12,13]

  • The murine version of the protein favours an inward-facing conformation

Read more

Summary

Introduction

P-glycoprotein (ABCB1) is an ATP-binding cassette transporter that plays an important role in the clearance of drugs and xenobiotics and is associated with multi-drug resistance in cancer. The murine version of the protein favours an inward-facing conformation (i.e. where the transmembrane domains –TMDs- surround a cavity leading to the cytoplasm and with the nucleotide-binding domains –NBDs- separated). This configuration of the Thonghin et al BMC Structural Biology (2018) 18:17 protein has been proposed to represent the higher affinity state for transported substrates (allocrites) such as drugs or xenobiotic compounds. One inward-facing structure for P-gp does display nucleotide at NBD1, but this structure was obtained after removal of the central linker polypeptide that joins NBD1 and TMD2 This large deletion inactivated the protein which showed only basal ATPase activity. The structural and biochemical data so far could be interpreted as implying that wild-type, active P-gp is very dynamic and exists only transiently in the outward-facing state, even in the presence of high ATP concentrations [14, 15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call