Abstract

RNA tertiary interactions or tertiary motifs are conserved structural patterns formed by pairwise interactions between nucleotides. They include base-pairing, base-stacking, and base-phosphate interactions. A-minor motifs are the most common tertiary interactions in the large ribosomal subunit. The A-minor motif is a nucleotide triple in which minor groove edges of an adenine base are inserted into the minor groove of neighboring helices, leading to interaction with a stabilizing base pair. We propose here novel features for identifying and predicting A-minor motifs in a given three-dimensional RNA molecule. By utilizing the features together with machine learning algorithms including random forests and support vector machines, we show experimentally that our approach is capable of predicting A-minor motifs in the given RNA molecule effectively, demonstrating the usefulness of the proposed approach. The techniques developed from this work will be useful for molecular biologists and biochemists to analyze RNA tertiary motifs, specifically A-minor interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.