Abstract
Novel Fe/MnK‐CNTs nanocomposites are developed as catalysts for direct production of lower olefins from syngas, delivering a high iron time yield of 337.2 μmolCO· ·s−1 with 51.3%C selectivity toward C2C4 olefins under the optimal reaction conditions (270°C, 2.0 MPa, 30,000 mL h−1 ). These catalysts are optimized by varying calcination temperature from 150 to 400°C. Multiple techniques including transmission electron microscopy, Elemental mapping, X‐ray diffraction, X‐ray photoelectron spectroscopy, H2‐temperature‐programmed reduction, and Raman were employed to reveal the relationship between the catalyst nature and unique catalytic behavior. In particular, the resultant catalyst from the calcination temperature of 220°C exhibits the highest selectivity of C2C4 olefins as well as good stability, which are enabled by the trade‐off among the effects of iron particle sizes, promoters, metal‐support interaction and support surface chemistry. Moreover, influences of reaction temperature, reaction pressure and space velocity are also investigated. © 2016 American Institute of Chemical Engineers AIChE J, 63: 154–161, 2017
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.