Abstract

The discovery of antibiotics around the middle twentieth century led to a decrease in the interest in antimycobacterial fatty acids. In order to re-establish the importance of naturally abundant fatty acid, a series of fatty acid-thiadiazole derivatives were designed and synthesized based on molecular hybridization approach. In vitro antimycobacterial potential was established by a screening of synthesized compounds against Mycobacterium tuberculosis H37Rv strain. Among them, compounds 5a, 5d, 5h, and 5j were the most active, with compound 5j exhibiting minimum inhibitory concentration of 2.34μg/ml against M.tb H37Rv. Additionally, the compounds were docked to determine the probable binding interactions and understand the mechanism of action of most active molecules on enoyl-acyl carrier protein reductases (InhA), which is involved in the mycobacterium fatty acid biosynthetic pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.