Abstract

Smartphones, digital cameras, and other imaging devices generate vast amounts of high-resolution colored images daily, stored on devices equipped with multi-core central processing units or on the cloud. Safeguarding these images from potential attackers has become a pressing concern. This paper introduces a set of six innovative image ciphers designed to be stronger, faster, and more efficient. Three of these algorithms incorporate the State-Based Tent Map (SBTM) Chaotic Pseudo Random Number Generator (CPRNG), while the remaining three employ a proposed modified variant, SBTMPi. The Grayscale Image Cipher (GIC), Colored Image Cipher Single-Thread RGB (CIC1), and Colored Image Cipher Three-Thread RGB (CIC3) showcase the application of the proposed algorithms. By incorporating novel techniques in the confusion and diffusion phases, these ciphers demonstrate remarkable performance, particularly with large colored images. The study underscores the potential of SBTM-based image ciphers, contributing to the advancement of secure image encryption techniques with robust random number generation capabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call