Abstract

We report a system for performing critical-dimension (CD) measurements of glass panels that uses a substepping system to generate a sequence of lower-resolution images and a fast, edge-directed image reconstruction algorithm to combine these images into a higher-resolution image. A large working distance and large aperture of microscope objective is required in glass panel manufacturing, to measure very small distances at high-level repeatability in a short time, which in turn allows only low magnification objectives. Low-resolution images are obtained when the camera of the CD measurement system is moved at step intervals smaller than the normal pixel size of the camera sensor. We propose a fast, edge-directed image registration (IR) algorithm to find the subpixel accuracy information for full-size images to be registered. The number of processed pixels is only about 5% to 10% of the number of pixels in the image, and the algorithm runs noniteratively. Thus, the subpixel IR algorithm is faster than other methods. In addition, a weighting calculation method for fast and robust edge-directed image interpolation algorithm is proposed to form a high-resolution image. Our experimental results prove that the proposed method offers faster processing time than the standard process and acceptable repeatability of CD measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.