Abstract

Protein farnesyltransferase (FTase), the enzyme responsible for protein farnesylation, has become a key target for the rational design of cancer chemotherapeutic agents. Herein it is shown that certain novel prenyl diphosphate analogues are potent inhibitors of mammalian FTase. Furthermore, the alcohol precursors of two of these compounds are able to block anchorage-independent growth of ras-transformed cells. While 3-allylfarnesol inhibits protein farnesylation, 3-vinylfarnesol instead leads to abnormal prenylation of proteins with the 3-vinylfarnesyl group. In a similar manner, 3-allylgeranylgeraniol acts as a highly specific inhibitor of protein geranylgeranylation, while 3-vinylgeranylgeraniol restores protein geranylgeranylation in cells. This study indicates that certain prenyl alcohol analogues can act as prenyltransferase inhibitors in situ, via a novel prodrug mechanism. These analogues may prove to be valuable tools for investigating the therapeutic consequences of inhibiting geranylgeranylation relative to farnesylation. Furthermore, the 3-vinyl alcohol analogues can inhibit transformed cell growth through a mechanism not involving prenyltransferase inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.