Abstract

Phenol-laden saline wastewaters can adversely affect water, groundwater, soil, organisms and ecosystems. Given that frequently-used biodegradation process is generally inhibited by salinity, this work aims to solve the problem through a novel configuration of external extractive membrane bioreactor (EMBR) for the objective of simultaneous phenol permeation, salt rejection and biodegradation. Contact angles of 160.9 ± 2.2° (water) and 0.0° (phenol) were observed on the electrospun polydimethylsiloxane/polymethyl methacrylate (PDMS/PMMA) membrane, suggesting this superhydrophobic/superorganophilic membrane was suitable for separating phenol from water-soluble salt. Phenol ranging from 14.1 ± 2.7 to 290.7 ± 10.4 mg/L (stages 1 to 8) was continuously permeated and completely biodegraded in external EMBR under a hydraulic retention time (HRT) of 24 h, which corresponded with detoxification performance improving from 6.3% to 70.5%. After phenol exposure of 8 stages, Proteobacteria and Saccharibacteria became the main phyla for microorganisms. Enumeration of functional genes (phe, amoA, narG, nirS) confirmed that phenol was mainly consumed by denitrifiers and other heterotrophs as the sole carbon and energy source via oxidation and ring cleavage. As bacterial responses, these genes’ proliferation was promoted under low phenol concentrations but inhibited under high phenol concentrations. Meanwhile, results of extracellular polymeric substances revealed that protein was the key substance in toxicity resistance, phenol adsorption and transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.